
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

DEPARTMENT OF MEASUREMENT AND INFORMATION SYSTEMS

The analysis and integration of
open-source office productivity software in

an enterprise environment

Author Advisors

Vajna Miklós
Dr. Szentiványi Gábor, ULX

Dr. Szántó Iván, ULX
Horváth Ákos, MIT

2011.

Abstract

With the exponential growth of computer usage in the past two decades, almost all businesses
are using electronic document processes. This requires integrated management of documents
in processes, directly from office productivity software. These documents are part of a business
workflow or a document management system, allowing easy collaboration.

The infrastructure of these processes is typically provided by a single vendor, where both
the office software and the document management systems are from the same supplier. One of
the biggest drawback of such a solution is that in almost all cases they are closed and proprietary
– making it impossible to replace some of the elements with other alternatives.

Previous solutions include proprietary clients connecting to proprietary servers and open-
source clients connecting to open-source servers, not allowing the usage of heterogeneous doc-
ument management systems.

In this thesis, we integrate open-source office software to document processes in a way that
they will be able to interoperate with closed, proprietary document management systems.

Kivonat

Az elektronikus dokumentumfolyamatok egyre szélesebb körben való elterjedése megkövete-
li, hogy a folyamaton keresztülhaladó dokumentumokat egységesen, integrált módon lehessen
kezelni és módosítani közvetlenül, az irodai programokból. Ezek a dokumentumok üzleti fo-
lyamatok vagy dokumentummenedzsment rendszerek részei, lehetővé téve a könnyű kollabo-
rációt.

Az ehhez szükséges infrastruktúra jellemzően egy beszállítótól származik, ahol mind az
irodai programok, mind pedig a dokumentummenedzsment rendszerek is egyazon szereplőtől
származnak. E megoldások egyik legnagyobb hátránya, hogy szinte kivétel nélkül zárt, tulaj-
donosi megközelítésre épülnek – kizárva annak lehetőségét, hogy egyes elemeit más, akár nyílt
forráskódú programokra cseréljék.

Az eddig elérhető megoldások tisztán tulajdonosi vagy tisztán nyílt forráskódú megközelí-
tést tettek lehetővé, nem engedve meg a heterogén dokumentummenedzsment rendszerek hasz-
nálatát.

Ebben a diplomatervben nyílt forráskódú irodai programokat integrálunk elektronikus do-
kumentumfolyamatokhoz oly módon, hogy azok képesek legyenek zárt, tulajdonosi dokumen-
tummenedzsment rendszerekkel is együttműködni.

Contents

1 Introduction 4
1.1 Document management . 4
1.2 Workflows . 5

2 Background 9
2.1 Document management . 9

2.1.1 General architecture of document management systems 9
2.1.2 Related standards . 11
2.1.3 Concrete implementations . 11
2.1.4 Differences from version control systems 13
2.1.5 UNO compontents . 14

2.2 Workflows . 15
2.2.1 Application servers . 15
2.2.2 Business Process Model and Notation 18
2.2.3 Workflow engines . 21
2.2.4 Object-Relational Mapping . 24
2.2.5 The BPM Console . 24

3 Overview of the Approach 28
3.1 Document management . 28
3.2 Workflows . 31

4 Design 35
4.1 Document management . 35

4.1.1 The SharePoint library . 35
4.1.2 The UNO interfaces . 36
4.1.3 User interface . 37

4.2 Workflows . 40
4.2.1 The workflow library . 40

2

4.2.2 jBPM and the BPM console server . 44
4.2.3 User interface . 48

5 Implementation Details 52
5.1 Document management . 52

5.1.1 The prototype . 52
5.1.2 The SharePoint protocol . 53
5.1.3 External libraries . 57
5.1.4 User interface . 57
5.1.5 Exception handling . 58

5.2 Workflows . 59
5.2.1 Authentication . 59
5.2.2 JSON handling . 60
5.2.3 User interface . 61
5.2.4 Error handling . 64

6 Evaluation 67
6.1 Document management . 67
6.2 Workflows . 69

7 Related Work 72
7.1 Document management . 72
7.2 Workflows . 74

8 Conclusion and Future Work 77
8.1 Document management . 77
8.2 Workflows . 78

Bibliography 80

3

Chapter 1

Introduction

Integration of an office productivity suite into electronic document flows can be divided into
two parts: document management integration can be done alone, then on top of that, adding
workflow support to an office client is possible.

1.1 Document management

Every major software development project uses some kind of version control system to track
the source code of their projects. The introduction of such systems help multiple developers
to synchronize their work, helps debugging (with retrieving older versions, if necessary) and
provides a way to document changes.

There are different approaches to version control:

• Centralized (Subversion [1] is probably the most popular centralized solution) systems
have a central server. A centralized system has a simple architecture, but on the other
hand, it provides only a few features.

• Distributed systems operate in a distributed environment (Git [2] is a good example).
Distributed systems can operate in more extreme conditions, while they are harder to
learn, because of their steep learning curve.

• A radically different solution is a hybrid cloud-based approach: in that case there is
a logical central server, where clients are in fact served by a large cluster, providing
enhanced availability.

The need for tracking versions and collaborating on documents is not specific to software
developers. An other type of similar software is usually referred to as a document management
system. It focuses on project management and it is meant to be used by a wider range of users

4

without specific software engineering knowledge. That means they usually do not manage
software source code files, but documents created by office suites such as Microsoft Office [3]
or LibreOffice [4] (formerly OpenOffice.org [5]).

There are numerous, currently unsolved problems in this area. Such enterprise systems are
supposed to be modular: each module communicates with the other components using an open
(documented) protocol and companies are allowed to replace one module with another imple-
mentation. In fact, this is one of the major reasons for using open-source software components
in an enterprise environment: that way protocols are always open, and companies can avoid
vendor lock-in.

Enterprise companies using proprietary software, but wanting to adopt open-source solu-
tions can start the migration with server products. The benefit of starting with servers is that
only the central infrastructure has to be modified. Given that the way of communication is
unchanged, the clients can be left untouched. Another approach is to focus on the client-side,
as important data is rarely stored there, so starting the migration with the client components
avoids the risk of a potential data loss, in case software quality is lower than expected.

One of the most widely used document management servers is Microsoft SharePoint [6].
It is well integrated with Microsoft Office, but previously it was not possible to replace the
office suite with an open-source alternative, because it did not support SharePoint. An open-
source alternative of SharePoint is Alfresco [7], which provides similar features, but uses its
own protocol.

Finally, in case of the cloud approach, the client is a simple web browser and even the
editing software is downloaded from the server each time the user wants to edit the documents
(Google Docs [8] is a good example). While this method is easy to use, it has its drawbacks
as well. At the moment none of the cloud-based solutions have all features a rich client such
as Microsoft Office or LibreOffice provides. Additionally, storing documents in the cloud
requires a stable and fast network connection during the editing process (which is currently
isn’t guaranteed in many cases) and requires trust in the cloud provider when editing sensitive
documents of a company.

In the current thesis, we are presenting a centralized client-side solution for using an ex-
isting, proprietary document management server with an open-source office productivity suite.
My solution is an extension to LibreOffice that adds support for accessing and managing doc-
uments from a SharePoint server directly from the office suite.

1.2 Workflows

Document management systems are often used as part of document-based workflows. Work-
flows represent a collection of connected steps to achieve a certain goal. A workflow engine

5

can manage process definitions storing these sequences. A process definition describes each
step, and the connection between steps. The steps are represented by nodes inside a process
definition. Once the definition is ready, it can instantiate a process definition, creating a process
instance. Such an object then always has a precise state:

• One or more of its nodes are active, and

• It can have multiple associated variables.

This model then can help extract some of the business logic of applications into more ab-
stract process definitions, described in a more separated, declarative way1.

Using workflows to represent processes describing a document’s change list is a common
pattern. In short, they are referred to as document-based workflows. Most solutions are imple-
mented with a strong dependency between the document management server and the workflow
engine, which introduces the problem of vendor lock-in once again.

On the other hand, in case a decoupled document server / workflow engine architecture is
found to be necessary – to address the problem of vendor lock-in –, the integration logic has
to be implemented in the client. Given that there is already a planned document management
client in the office suite running on the client, it’s a natural extension to introduce workflow
integration in the office client to manage document-based workflows.

Based on the experience from a real world use-case, we identified the following require-
ments as mandatory:

• If a document is open, it’s useful if operations on that document can be done from the
office suite, which already has a reference to the document. Think about starting a chosen
process definition to start a new instance, associated with the current document.

• The workflow server talks about tasks and group of tasks, and each task is connected to
a certain document. This is a conceptional difference to the model of folders and files,
which is already familiar to a user.

• A common pattern is to assign a task to a group of users, and then require exactly one
member of the group to perform the task.

• As outlined above, the ability to change the document server while not touching the
workflow engine – and also the other way around – may be a requirement when planning
a document-based workflow system.

1Even if script tasks can contain imperative code, the main structure of a process definition is always declara-
tive.

6

• It can be necessary to limit the write access to the associated document when working
on it to a certain part of the file. This helps the user performing the task focusing on the
work item itself, even if the document is a large one.

• It is uncomfortable if storing the document on the server and making a decision as part
of the current workflow task is not a single atomic operation.

• It is important to realise that while finishing the work on a document and marking a given
workflow task is usually done together, sometimes only the previous is wished. Support
for such incremental snapshots is vital.

• Finally, even if rolling back the workflow state is not trivial (given that the workflow
interacts with external services, rolling back the workflow itself is not enough, exter-
nal components should be notified using compensation actions), support for releasing
claimed group tasks is required.

There is one more operation where a modified workflow server is needed. In general, but
especially when group tasks or decisions are involved, creating audit logs of process and node
instances are important. Being able to them from the office client makes viewing them much
easier.

Based on that, we can build a list of functionality that can serve as a motivation – to help
interacting with document-based workflows, in no particular order:

• Workspaces, documents, task types and tasks should be represented to the user following
the well-known file-metaphor.

• The document server should be decoupled from the workflow server, to allow a modular
architecture, having independent layers.

• Support for both personal and indirectly assigned group tasks is required.

• Even if group task is claimed by a user, the system should support releasing the task back
to the group, if the user realises he/she is not able to perform it in time.

• It should be possible to associate a new process instance to the current document.

• If the current task involves making decisions, the list of possible choices should be re-
trieved from the workflow engine.

• Accessing the audit log from the office client is required.

• Supporting incremental snapshots till the task is marked as completed is needed.

7

• As a helper feature, masking the document so that only the relevant parts are editable by
the user is useful.

To summarize our goals:

• We want to design document management integration on the client-side.

• We want to add workflow integration support to the solution.

• We want to keep the created solution portable across different platforms.

The rest of this thesis is structured as follows. First, we introduce necessary background
knowledge, which was present before the current thesis, but is needed to understand the rest of
this work (Chapter 2). In Chapter 3, we propose our approach. Chapter 4 describes the design
of the solution, as well as relation to the underlying techniques. Next, we detail the imple-
mentation we created (Chapter 5) and also evaluate it (Chapter 6). Finally we present work
related to the current solution (Chapter 7) and give a summary, including future development
directions (Chapter 8).

8

Chapter 2

Background

In this chapter, we will have a look at solutions we want to build on in our approach. The
first section details background of document management systems, the second one introduces
workflow engines.

2.1 Document management

Once we defined what a document management system is, this section details standards and
implementations of these systems. At the end of the section, we describe UNO, the component
model we want to base our approach on.

2.1.1 General architecture of document management systems

A document management system has a typical client-server model: a document management
server stores the documents in a document repository, which can be accessed via various in-
terfaces. The other part of the system is accessed via a client, which has built-in support for
opening, saving and editing documents.

Office suite
Document server

Save

Open

Edit Share

 Register

Documents

Figure 2.1. Architecture of a document management system

Figure 2.1 shows the two entities of the system. They have the following operations:

9

• The server primarily listens to client requests. Additionally, it allows performing opera-
tions directly on the server.

• The client, connecting to one or more document server.

Every user can have access to document workspaces. Workspaces can have documents,
links and tasks:

• documents: file based document representation

• links: collection of bookmarks

• tasks: work items related to the documents of the workspace

A workspace can be shared with different permissions (read-only, read-write), and that is
typically done by sending an invitation email which can be accepted by the other user.

A user may access the document server using a web browser, or via rich client applications.
The advantage of the web browser interface is that it can be accessed from almost everywhere,
however, document editing can’t be performed. If such an operation should be performed, then
the user has to manually download the document, edit then upload it. Done rarely, this does not
cause a problem, but of course it is uncomfortable for daily work.

The other interface is a rich client, which is installed on the machine of the user. Vendors
prefer to produce a corresponding client for their server, Microsoft SharePoint and Microsoft
Office is a typical setup.

In case of servers or clients speaking different communication protocols, selection of the
used protocol is selected differently on client and server side. Servers can listen on different
addresses, and in this case the address identifies not only the server, but the used protocol as
well.

For example, Alfresco, has its native protocol, but also (more or less) provides support for
the SharePoint protocol. As a result, it can be configured to listen on one URL as an Alfresco
server, and on an other URL as a SharePoint server.

Clients can have different extensions or plug-ins to handle different protocols. For exam-
ple, Microsoft Office can accept SharePoint URL’s in the standard open file dialog, while the
Alfresco extension for OpenOffice.org has a dedicated menu in the application to connect to an
Alfresco server.

It is also common for the client extensions to have minimal business logic. For example
the proprietary SharePoint extension to OpenOffice.org, created by Oracle can’t talk to every
SharePoint server, but Microsoft Office does – as long as a server-side component provided by
Oracle is not installed on the server. While this approach may be compelling during develop-
ment, actually it is uncomfortable for system administrators.

10

2.1.2 Related standards

CMIS Clients

CMIS

Domain Model

Atom

Server

SOAP

Server

CMIS API

(services)

Figure 2.2. Architecture of the CMIS standard

The specification called Content Management Interoperability Services [9] is created to address
compatibility issues between various document management server implementations. OASIS
approved it on May 1, 2010. Also, at the time of writing, its implementation is far from com-
plete among major document management servers. Alfresco 3.3+ implements the client side
only, SharePoint 2007 does not support it yet, so at the moment it is only a vision that all major
document servers will implement this specification.

On the other hand, there are a lot of implementations in other products, such as IBM Lotus
Connections 3.0 [10] (server side only) or TYPO3 (client and server side).

CMIS has two main goals:

• Providing a list of web service (SOAP) interfaces, which are language-independent.

• Separating the service and content, making it possible to implement services for legacy
document repositories without modifying them.

To realize this separation, it defines a domain model, describing data model elements, ser-
vices to operate on this data model and concrete syntaxes: the Restful AtomPub Binding and
the Web Services (SOAP) binding (see Figure 2.2).

2.1.3 Concrete implementations

In this subsection, we give a short comparison of Microsoft SharePoint 2007 and Alfresco
Community Edition 3.4.

Alfresco claims to be “The Open Source Alternative for Enterprise Content Management”.
[11] A difference is that Alfresco does not allow deletion wherever possible. Of course it is
possible to delete documents, but it isn’t possible to delete document versions, to overwrite a
previous document version or to delete a whole workspace as a single operation.

11

On the other hand, SharePoint uses its leading position to avoid publishing its communica-
tion protocol. This protocol was designed before the CMIS standard was published, and it is not
a standard. For example the put document method has a document parameter – the documen-
tation [12] does not mention the timestamp of last modification, part of the meta information
structure, which is in fact mandatory (and there is no problem with that being mandatory, since
it uses an optimistic concurrency approach). There is no similar problem with Alfresco, where
in the worst case it is possible to check the source code or contact the Alfresco engineers using
their community forums.

When evaluating properties, we selected the most common use-cases, required by enter-
prise companies. We intentionally did not evaluate management of document workspace per-
missions, links inside document workspaces and tasks inside document workspaces, as those
features are beyond the scope of the current thesis.

The properties we evaluated are detailed in Table 2.1.

Feature SharePoint Alfresco
License proprietary open-source

Maturity 8 years [13] 6 years

Creating a document workspace supported supported

Deleting a document workspace supported not supported1

Checking out a document supported supported

Checking in a document supported supported

Cancelling the checkout of a document supported supported

Getting documents supported supported

Putting documents supported supported

Listing versions of a document supported supported

Viewing previous versions a document supported supported

Deleting previous versions a document supported not supported

Overwriting previous versions a document supported not supported

Restoring a previous versions a document supported supported

Deleting a document supported supported

1 This feature is supported when using the native protocol of Alfresco.

Table 2.1. Comparison of SharePoint and Alfresco

To sum up, the key features we need to support are:

• management of workspaces, folders and documents using a folder/file metaphor

12

• version control of documents: the creation, update, list and delete operations on versions

• check-in / check-out support for documents

2.1.4 Differences from version control systems

Version control systems in general have richer semantics, more features to track software source
code. In order to make document management systems easy to use for non-technical people,
some of the features of version control systems are simply missing from document management
systems. In this subsection, we describe the major removed operations.

Please note that this does not mean version control systems are superior. They are optimized
to handle text based files. Version control systems are not efficient at handling binary files – for
example zipped XML files, used by the ODF/OOXML formats – while document management
systems are designed to deal with such formats.

The development of source code is typically not linear. It’s common that branches are
created and merged during development, while a document server forces you to follow a single
development line.

Source code repositories are also checked out as a single operation, containing all files of
the repository. Similarly, when a client checks in multiple files, that makes a single commit,
and later it is possible to see all the files modified by that commit. Document servers make the
assumption that the client wants to check out a single file, and a commit affects only a single
file.

Documents are improving, but we rarely speak about document bugs, as we speak about
software bugs. Because of that, version control systems usually provide a way to check out
the state of the entire repository at a given earlier time, to discover which commit introduced
a specific bug. Document servers allow listing of versions of a document, then the user has to
manually select the version which is closest to a given date.

Finally, version control systems provide a way to annotate source code files: to determine
the author of every single line of a file, where the author of a line is the person who authored the
commit introducing the line in question. Document management servers do not pay attention to
this, since the document formats they usually track (think of ODF or OOXML, again) provide
a track changes feature already, so it makes little sense to duplicate that functionality on the
server side. Not to mention that these document formats store the model of the document
(model, as in Model-View-Controller), and when we speak about lines, we speak about the
view of the model, so the same annotate operation would have a different meaning here.

To sum up, we can see that document management systems feature less operations in gen-
eral to make usage by a wider user base possible – but we should not forget that version control

13

systems solve a related, but still different problem, so neither of them is an ultimate tool, mak-
ing the other one useless.

2.1.5 UNO compontents

As already introduced in section 1.1, my solution will be a LibreOffice extension that registers
a UNO [14] component. UNO is the interface based component model of LibreOffice. The
purpose of UNO is to abstract service definitions (defined in a language-idependent IDL-like
syntax) from service implementations – they can be developed in multiple languages: C++,
Python, Java or BASIC.

The caller is not aware which language the implementation uses, and it does not need to
be, either. In our extension, we call BASIC macros from the menu elements, which invoke the
underlying Java code, where the business logic is implemented.

All the Java code is contained by a single jar file, the workflow of creating it is shown in
Figure 2.3.

Specification

idlc

regmerge

javamaker

Implementation

javac

jar
Library

.idl

.urd

types.rdb

.java

.class .jar

Figure 2.3. Workflow of implementing an UNO service in Java

• idlc compiles the .idl files to UNO Resource Descriptors (URD),

• regmerge merges all the .urd files of the component to a single Resource Database,

• javamaker creates interfaces (.class files) from the Resource Database,

14

• finally the standard Java development tools (javac, jar) create the final jar, including the
Java implementation.

Once the jar package is ready, a zip archive is created, containing:

• Addons.xcu, containing the menu items

• the BASIC library (callbacks for the menu items)

• Java libraries used by the Java implementation

• the Java implementation

• metamodel of the stored settings

• other files: metadata, extension description, license, etc.

This zip archive gets a .oxt extension, and can be easily installed by the user, using the
extension manager of LibreOffice.

2.2 Workflows

2.2.1 Application servers

The term application server is used to describe the software framework on which the business
logic of an application runs. The application server typically interacts with SQL database
servers, file servers or web servers.

Web application servers

A common usage of application servers is a web application server, where the framework han-
dles common web-related tasks, so that application developers can focus on the development
of the software project itself. Such common tasks include, but not limited to:

• handling connections towards the database layer

• handling incoming requests from the HTTP server

• management of a cluster

• load-balancing features

• fail-over capabilities

15

• centralized configuration

• security: cryptographic and authentication features

Given that the integration between a contained application and server framework is strong,
it is a common practice to use the same programming language to implement both. As a
consequence, e.g. Java applications usually run on application servers implemented in Java,
and so on.

There are two approaches1 to match this requirement. One approach is to use a generic
web server, for example the Apache HTTP Server [15]. Given that almost all programming
languages has a C API to interact with managed code, plugins for the web server can be
implemented in C to execute managed code when an HTTP requests arrives, addressing the
application in question.

The other approach is to have a dedicated HTTP server, which can only execute applica-
tions written in a given programming language, but it does so more effectively. Supported
programming languages include:

• .NET: both Microsoft and 3rd-party application servers are available. Microsoft provides
this functionality in their Windows Server product and their .NET Framework.

• Java: we will discuss this in detail in section 2.2.1.2.

• PHP: Zend Technologies produces Zend Server to host PHP applications.

• Ruby: the Ruby on Rails framework includes the WEBrick HTTP server.

Java application servers

Java application servers have the benefit of implementing common interfaces: that way chang-
ing application servers is supposed to be an easy operation.

These common interfaces live under the javax.servlet namespace [16]. Some of the in-
cluded concepts:

• The Servlet interface: an implementing class runs within a web server. Its most used
implementation is the HttpServlet class, that can handle HTTP GET, PUT, POST and
DELETE requests.

• The application can be packaged to a WAR file before it is deployed on the application
server.

1A third, but ineffective method is to execute the interpreter of the programming language each time a request
is served, referred as Common Gateway Interface (CGI).

16

• Servlets are invoked by a web container, the module of the application server directly
interacting with servlets.

• Template-based output can be generated using JavaServer Pages (JSP). Such templates
are processed by the JavaServer Pages compiler.

Popular Java application server implementations include:

• GlassFish: An open-source Java application server, started by Sun Microsystems for the
Java EE platform, and it is still supported by Oracle. The name of the product with
commercial support is Oracle GlassFish Server.

• JBoss Application Server: see detailed discussion in section 2.2.1.3.

• Apache Tomcat: This is the application server implemented by the Apache Software
foundation, providing an implementation of the Java Servlet and JavaServer Pages spec-
ifications.

• IBM WebSphere Application Server (WAS): A commercial Java application server from
IBM.

JBoss

JBoss Application server (in short, JBoss AS) is an open-source application server based on
Java EE, originally developed by JBoss, Inc – now a division of Red Hat. Besides implementing
a server on top of Java, it implements the Java EE specification as well. JBoss is written in pure
Java, meaning that it is usable on any operating system Java runs on.

At the time of writing, the latest stable version of JBoss is AS7, which introduces a rewritten
codebase, focus on parallel execution, and radical speedup of start-up time [17].

JBoss provides the common application server features, including:

• clustering and load-balancing

• fail-over, even if sessions are configured

• an implementation of the Authentication and Authorization Service (JAAS) specification

• management and monitoring though Java Management Extensions (JMX)

• implementation of the Java Persistence API (JPA), though Hibernate

• implementation of JavaServer Pages and / Java Servlet, through Tomcat

• integrated support for Java Database Connectivity (JDBC)

17

• OSGi support, which means one can deploy OSGi bundles in a JBoss server, next to other
existing non-OSGi deployments

JBoss itself is open-source, though commercial support is available from Red Hat.

2.2.2 Business Process Model and Notation

What is business process modelling?

Business process modelling is a process of three steps:

• find nodes: have a look at the real-world process and split it to a sequence of individual
steps

• node properties: define additional properties for nodes, such as the description or due
date

• transition between nodes: once transitions are declared, we can have an executable pro-
cess definition

The Business Process Model and Notation (BPMN) standard [18] supports all these steps,
Figure 2.4 shows such a completely defined process definition, using the Eclipse tool of jBPM.

Figure 2.4. A simple BPMN process with three human tasks and two gateways

The rest of this subsection gives a brief introduction to BPMN concepts used in the later
chapters of this thesis. Due to size limitations, we didn’t consider describing all types of each
concept here.

BPMN basic concepts

The most important elements in a process definition are nodes, and transitions between these
nodes. Figure 2.5 shows that BPMN uses the following concepts to represent these:

• activities: a step of the real-word process – for example a human task or a script task

• events: represent the start and end of a process, crossing a deadline or error handling

• gateways: diverging and converging gateways model parallelism and choices

18

• connectors: declare valid transitions between elements

Activities Events Gateways Connectors

Figure 2.5. The basic diagram elements of BPMN

Figure 2.6 shows that there are two types of activities: tasks and subprocesses.

• tasks: are part of a process definition that are not described in more detail

• subprocesses: refer to reusable independent parts of process definitions

Self Evaluation

Human task

Credit Card Handling

Collapsed Sub-Process

Figure 2.6. Activity types in BPMN

BPMN supports start, intermediate and stop events. Start events mark where the execution
of the process will begin. Figure 2.7 shows three start even types:

• normal start: used when an explicit start invokes the process

• message start: indicates the process was triggered by receiving a message

• rule start: means the process was activated by a business rule

None Message Rule

Figure 2.7. Three start event types in BPMN

Intermediate events can occur anytime after the start, but before the end. They can be (see
Figure 2.8):

• normal events: are generated by activities

19

• timer events: can occur when crossing deadlines

• compensation events: can occur when rolling back a transaction

None Timer Compensation

Figure 2.8. Three intermediate event types in BPMN

Finally, end events indicate that the main process ended. Subtypes shown on Figure 2.9:

• none end: means the main process ended, but subprocesses are still running

• terminate end: indicates the execution of the process instance ends

• error end: describes something unexpected happened

None Terminate Error

Figure 2.9. Three end event types in BPMN

The two most common used gateway types (Figure 2.10):

• exclusive gateway (can also be marked with an internal “X”): only one branch is executed

• parallel gateway: branches are executed in parallel

Exclusive Parallel

Figure 2.10. Two gateway types in BPMN

The last BPMN type we introduce here are connectors. Three types of them can be seen in
Figure 2.11:

20

• sequence flow: is used for ordering between tasks

• message flow: indicates two activities are prepared to send / receive messages

• association: is used to assign additional data to activities

Sequence Flow Message Flow Association

Figure 2.11. Three connector types in BPMN

BPMN support in jBPM

3.x series of jBPM and earlier supported the jPDL format for declaring process definitions. 4.x
series of jBPM introduced support for BPMN, while jBPM 5.x supports BPMN exclusively.
Tools are available to somewhat automate the conversion from jPDL to BPMN.

2.2.3 Workflow engines

What is a workflow engine

As already mentioned in the Introduction chapter, a workflow engine manages process def-
initions and instances. The primary functionality the engine itself provides is the ability to
execute these instances, storing the state of the process instance in a permanent database. Once
the process is finished, it becomes a historic process instance, which is still stored.

A process definition consists of nodes. There are two node classes:

• human tasks are to be executed manually

• script tasks, diverging or converging gateways are executed automatically

Additionally, each node can have several properties, for example imperative code attached
to a script task or due date for a human task.

The architecture of a workflow engine is event-based, changes to process instances are
triggered by events:

• internal events: when a deadline is reached

• external events: when a task is completed, a trigger in an other application starts a new
process instance, etc.

When executing actions for external events, the following steps are implemented:

21

• Check if the requested action is valid in the active state (i.e. there is a transition from the
current state to the requested state in the process definition).

• Authorize the caller to determine if executing the action is permitted by the user.

• Executing the action itself: once the operation finished, act based on its exit code (initiate
error handling if necessary).

There are three popular standards to describe a process definition:

• The Business Process Execution Language (BPEL): is a standard describing an exe-
cutable language where the business process interacts with web services.

• The Business Process Model and Notation (BPMN): will discuss it in subsection 2.2.2.

• The jBPM Process Definition Language (JPDL): a proprietary language developed by
JBoss, focusing on readability.

Operation modes

A workflow engine can have two different operation modes. The first follows a client-server
model. Figure 2.12 shows this situation, where the workflow engine is behind a server interface.

Figure 2.12. A workflow engine in server mode

For example, in case of jBPM there is a REST API available for clients to interact with the
engine. The benefit is that the workflow server can run on a separate machine, also there is no
need to start or stop it when clients start or stop. Additionally, multiple clients can connect to
the workflow server at the same time.

Figure 2.13 describes the second, embedded mode.

22

Data-

baseBusiness

logic

User

interface

Workflow

engine

Figure 2.13. A workflow engine in embedded mode

In this case the application and the workflow server can run in the same process, the work-
flow engine is used as a simple library, which produces increased performance.

jBPM

Implemented in Java, jBPM [19] is an open-source business process manager. One property
that makes it different from other workflow engines is that it tries to give better support for
developers as well. Usually workflow engines target non-technical people, making the life of
users already used to imperative programming hard.

The core supports executing processes defined according to the BPMN 2.0 specification2.
On top of that, it offers more:

• a web-based and an Eclipse plugin to design process definitions using an easy drag and
drop method

• its storage back-end can be any database which is supported by JPA[20]

• handling of human tasks is a separate component – a sample implementation is included
in the release

• a BPM console (detailed later in subsection 2.2.5), built on top of the core provides web-
based management and a monitoring interface for process instances and tasks

• a repository, named Guvnor, can be optionally used to deploy processes to

2Previously it only supported the jPDL language.

23

• the storage backend can log all detail needed for audit functionality

Script tasks can be implemented in multiple imperative languages:

• MVFLEX Expression Language (MVEL): a hybrid dynamically/statically typed script-
ing language

• Java: in case a non-scripting language is preferred.

2.2.4 Object-Relational Mapping

Both jBPM itself and its sample human task server implementation uses object-relational map-
ping (ORM) to store data in relational database, accessed using SQL. The general problem
is that object-oriented applications store runtime data in objects, while a persistent data store
can’t store object as-is, code has to be manually written to store and restore object to / from a
relational database.

An ORM automates this procedure, reducing code needed to be implemented manually.
A disadvantage of using an ORM can be that highly optimised hand-constructed queries are
faster then the ones auto-generated by the ORM. A solution for this can be the usage of stored
procedures, in case portability between storage back-ends is not a requirement.

In case of Java, the de facto ORM tool is hibernate, jBPM uses that as well. Hibernate
introduces the Hibernate Query Language (HQL), which is fully-object oriented: on one hand
that means it understands inheritance and polymorphism, on the other hand it still provides
flexibility similar to the traditional stored procedures.

2.2.5 The BPM Console

The BPM Console is a frontend to jBPM, allowing the usage of the workflow engine in a client-
server model. Here we introduce concepts which will be later necessary to understand how we
extended this project to meet our needs.

24

Technical overview

GWT Console

Console UI

Console Server

Process Engine

Process Engine

Core
Integration

Layer Interface

Integration

Layer Impl

S
e
rv

ic
e

L
o
a
d
e
r

 HTTP

Figure 2.14. Components of the BPM console

The BPM Console is a generic web console for process engines. In practice it is used by:

• Riftsaw: a BPEL engine

• jBPM: a BPMN engine

• Drools: a business logic integration platform

Components are shown on Figure 2.14:

• the integration layer is an interface to be implemented by process engines

• the console server provides a REST API and translates HTTP requests to the integration
layer

• the web console is a Google Web Toolkit (GWT) application communicating with the
console server only

The integration layer discovers the available implementation using the standard J2EE ser-
vice loader mechanism [21]. The console-related artifacts are described in Table 2.2.

Archive name Description
gwt-console.war The user interface

gwt-console-server.war The REST server

gwt-console-rpc.jar Domain model

gwt-console-server-integration.jar Integration layer

Table 2.2. Artifacts of the BPM console

25

Workspace framework

The workspace of the BPM console is a concept completely independent from the document
server workspace. The workspace here is the user interface of the web console. The workspace
features editors. These editors are implementing a common API, and they serve two purposes:

• they can be used for management of the workflow engine

• they serve as an example on how to use the console server

The editor interface implementations are called buildtime plugins. For our purposes, two
plugins are interesting:

• ProcessEditor: can be used to edit process instances: start, inspect or terminate

• TaskEditor: can be used to complete, claim, release tasks

Both of these editors are specific to jBPM, the list of loaded plugins is determined at build-
time: a profile can be specified as a parameter of the build process, and the jBPM profile lists
these plugins. As a result, the selected profile becomes the workspace configuration.

The console server supports runtime plugins. These are:

• FormDispatcherPlugin: handles the completion of task forms

• GraphViewerPlugin: handles rendering of the current state of a process instance

• ProcessEnginePlugin: handles management of the process definitions

The same service loader mechanism is used to load the implementation of these interfaces as
for the integration layer, however, in case these are not available, then the related functionality
is simply hidden from the web interface, it does not cause a fatal error.

Management capabilities

Management capabilities are determined by the installed editor plugins. The project suggests
that they try to keep a balance between:

• providing plugins which are examples only

• supporting every corner case

The process editor offers the following features:

26

• Management of the life cycle of process instances: process instances can be started,
terminated or deleted. Termination ends the process instance, deletion also removes the
history information.

• Visualization of process activity: the already mentioned GraphViewerPlugin can draw
the graphical representation of the BPMN definition and show the actual instance state.

• Instance data can be inspected: variables associated with a given process instance can be
accessed read-only.

• Process form handling: if the process definition has a form associated (which is the way
to start parametrized workflows), it will show it and let the user fill it out before the
process instance starts.

The task editor can manage tasks of the currently logged in user. It features:

• a personal and a group task lister

• a manager for the task life cycle: it can be open or assigned (whenever it is completed, it
gets removed from the list, so there is no such state in the user interface)

• a handler for task forms: whenever the task has an associated form, the user can provide
input or review read-only data

In this chapter, we had a look at technologies we want to use in our solution. We saw how
a document management system looks like, what UNO is, introduced BPMN, jBPM and its
BPM console. Chapter 3 will give an overview of our solution, using these concepts.

27

Chapter 3

Overview of the Approach

Our approach is to take an existing open-source office suite, and extend it to be able to commu-
nicate with the document management server. Once this is ready, we can connect to an existing
workflow server as well, extending it, if necessary.

3.1 Document management

In the current thesis, we propose a client-based approach for the integration of open-source
productivity software into enterprise document management systems. We discuss the case here
when an enterprise company tries to replace the client part of the document management system
with an open-source alternative, while keeping the existing proprietary server-side part of the
system. As a consequence, the center of our approach is the document management part of the
client.

Document management system

Sharepoint

LibreOffice

Sharepoint

extension

Sharepoint

protocol

Figure 3.1. Architecture of the approach

28

Components of Figure 3.1 can be replaced, for example, Alfresco (with its SharePoint mod-
ule) can be used in place of SharePoint, and OpenOffice.org can be used in place of LibreOffice.

The SharePoint server and the office productivity suite is already available, so at this stage
the only remaining component is the SharePoint extension in LibreOffice that is missing, and
our approach creates that.

Note that Alfresco already has an OpenOffice.org extension called OPAL [22]. That nat-
urally uses Alfresco’s native protocol to communicate with the server. The following major
changes are needed to make it suit our needs:

• It’s intended to be used with OpenOffice.org 3.1 – the last stable version of OpenOf-
fice.org is 3.3, and it won’t work with this version. The oldest stable release of LibreOf-
fice is based on OpenOffice.org 3.3 as well, so porting the extension to 3.3 is essential to
make it work at all with LibreOffice.

• It works by installing an additional module on the Alfresco server, so the business logic
is minimal in the extension. My approach is to communicate without any server-side
component installations required.

• The SharePoint protocol supports more features than Alfresco, so the user interface has
to be extended to cover the new features.

• Finally, the protocol used has to be changed: by using the SharePoint protocol, the ex-
tension can communicate with both SharePoint and Alfresco, covering a lot of today’s
enterprise document management server installations.

Now that we understand what component we want to create and how, it’s essential to un-
derstand what workflow the document management clients take part in.

The workflow has the following steps:

1. Create workspace: It creates a document workspace, which is the top-level container for
any document stored on the document management server.

2. Browse workspace: An existing workspace can be browsed, and a documents can be put
to workspaces.

3. Delete workspace: It’s possible to get rid of no longer needed workspaces.

4. Put document: After selecting a target folder (using browse), a document can be up-
loaded.

5. Get document: Existing documents can be downloaded for viewing or editing.

29

6. Remove document: Unneeded documents can be removed individually.

7. List versions: Every upload of a document may (depending on its type) create a new
version of the document. We can retrieve the list of this change log.

8. View previous version: older instances of a document can be viewed read-only anytime.

9. Restore version: it’s possible to revert all changes after a given version with this step.

10. Delete version: older versions can be deleted.

Create

workspace

Browse

workspace

Put

document

Get

document

List

versions

Remove

document

View previous

Version

Delete

workspace

Restore

version

Delete

version

Figure 3.2. Workflow of the approach. Yellow: operations on workspaces, green: operation on
documents.

Figure 3.2 shows what combinations of steps are allowed. An example:

1. A workspace is created.

2. The workspace is browsed.

3. A document is put to the workspace.

4. The workspace is browsed again.

5. The workspace gets deleted.

30

3.2 Workflows

Document and workflow server decoupling

Once the document-management client part of the system is in place, we propose a decoupled
approach to connect the document management system and the workflow engine (Figure 3.3).
We already saw what are the benefits of a system where each module can be replaced without
altering the whole system, the motivation is the same here.

Document server Workflow server

Office client

Document and process

references

Document instances
Process instances

Figure 3.3. Architecture of the decoupled document based workflow approach

In our proposal the document server and the workflow server is decoupled, and the connec-
tion between the two is provided by the office client. Documents are stored on the document
server, process instances are managed by the workflow engine, and the client will have refer-
ences to both. Additionally, the workflow server will store references to documents, but such
references are resolved by the client. As a result, the workflow server will not have to be altered
in case the document server changes.

The system will have two operation modes:

• In case no workflow server is configured, or this is explicitly requested by the user, the
extension will still connect to the document server only.

• Otherwise, the extension will query the tasks of the user in question from the workflow
server, and that will be the basis of all future work.

The possible states of the latter mode of operation is demonstrated in Figure 3.4.

31

Create

process instance

Assign human

task

Edit document
Complete human

task

Process instance

ends

Figure 3.4. Control flow of the decoupled document-based workflow approach

The remaining part of this chapter describes each key feature we plan to design later.

Starting process instances

A process instance can be started externally or internally:

• If it is started externally, then the initiator of the process instance connects to the work-
flow console server using the console UI or using some other external application. After
authentication, the user starts the process instance by manually specifying the reference
(URL) of the associated document.

• A more integrated method is to start the workflow from the office client. First the associ-
ated document has to be opened, then the office client can be told to start a new process
instance, once its type (a process definition) is selected from the process definition list.

Incremental snapshots

Once a process instance is started, its execution will be quickly blocked by waiting for a human
task to be executed. The simplest case is when this human task is directly assigned to a user
in the process definition. Given that each process instance has an associated document, we
can talk about assigned documents. If a workflow server is configured, the file picker (the
dialog that shows up when the user wants to open or save documents) will list these assigned
documents for the user, providing them as documents in a virtual folder.

Figure 3.5. Workflow with two statically assigned human tasks

32

Now in case the workflow has two human tasks and statically assigned users (see Fig-
ure 3.5), the extension will offer completing the task when saving the document. Incremental

snapshots is a feature that allows the user to choose if the task completion is wished or not, so
the document can be incrementally saved to the document server as the task is being completed,
and once it is done, the complete task operation is performed on the workflow server as well –
without leaving the office environment for a second. Behind the scenes, once the last human
task is completed as well, the process instance simply ends.

Group assignment

A natural extension of naming the assigned users in the process definition is to think about roles
or groups, so the exact user performing the task can be determined later, at runtime. When the
user reaches the file picker, a button can navigate to another virtual folder, called group tasks.

A new operation in this case will be claiming a task, which means selecting a document
from the group tasks folder and moving it to the personal tasks folder. Once the task is a
personal one, the user can proceed as before by editing the document, then completing the task.

The claim of a task can be undone: group tasks can be released – which means moving
from the group tasks folder to the personal tasks one so other users can claim the task again.

Document masking

Once the currently opened document has associated workflow information, the editor can map
parts of the document to parts of the process definition. Using this knowledge, the editor can
limit write access to the relevant subset of the document, based on the current task instance
associated to the document.

Decisions

Figure 3.6. Workflow with a diverging and a converging gateway

Figure 3.6 shows a process definition containing a business decision. The problem is that in
this case the First User Task can’t be completed without arguments: a decision has to be made
to determine which transition to fire after task completion.

33

The extension will query the list of possible choices from the workflow server and the user
will be able to make the decision when saving the document.

Audit log

A benefit of using a workflow engine is the ability to query information about completed pro-
cess instances. The usual question are:

• When did an action happen?

• Who performed the action?

• Where did it happen?

• What was the outcome of the action?

The extension will be able to show details of completed process, task and node instances,
answering these questions.

In this chapter, we have shown what component of the document-based workflow system
we plan to implement. Chapter 4 will describe how the implementation is designed to happen.

34

Chapter 4

Design

4.1 Document management

4.1.1 The SharePoint library

The Java implementation is split into two parts, the generic SharePoint library and the user
interface, which is a UNO component. The previous lives under the hu.ulx.lpsp.sharepoint

namespace, the other does so under hu.ulx.lpsp.comp.
The UML package diagram on Figure 4.1 shows these packages with their dependencies.

hu.ulx.lpsp.sharepoint

hu.ulx.lpsp.comp.model

hu.ulx.lpsp.comp

hu.ulx.lpsp.comp.utils

hu.ulx.lpsp.comp.ui

Figure 4.1. Packages of the document management extension

At the time of writing, there is no ready to use Java library to communicate with a Share-
Point server. Because of this, we decided to separate the SharePoint protocol implementation
from the LibreOffice-specific part of the extension to make it reusable in other projects. It
provides the following classes:

35

• SPHandler: Handles requests from a frontend. Unless a feature has a specific class, it is
implemented here.

• FileOpenParser: Parses the result from the list directory of a workspace request.

• FileOpenRootParser: Parses the result from the list workspaces request.

• HandlerTest: Automatically tests all features on a given server using JUnit.

• LastModParser: Parses the result from the get last modification date request.

• Messages: Provides localization for the library error messages.

• PacketParser: Extracts the error message from a Vermeer RPC [23] response packet.

• Version: Handles document versions.

We paid attention in our solution not to require additional server-side component installa-
tion, the SharePoint library can communicate with a standard SharePoint server without any
server modifications.

4.1.2 The UNO interfaces

UNO

Interfaces

UNO

Services

BASIC

Macros

Menu

Items

Java

Implementation
Dialogs

Figure 4.2. Technologies used in the design of the extension

The UNO interfaces are inspired by the already referenced OPAL extension. Where it made
sense, we reused code from there, and changed it to work with Sharepoint.

It’s a UNO convention that interfaces start with a capital X. The following UNO interfaces
(see Figure 4.2) are provided by the extension:

• XSharepointFilePicker: an open/save as file picker.

36

• XSharepointVersions: a versions dialog.

• XAuthenticationManager: a handler for different authentication mechanisms.

• XConnection: a connection to a SharePoint server.

• XSharepointDocument: a document received from the SharePoint server.

• XSharepointDocumentManager: a storage for XSharepointDocument instances.

The extension provides a single exception type – SharepointException – when it throws
errors.

It also provides a single enumeration type – FileTypes – to declare the list of LibreOffice
applications it handles. (Its current value is: Writer, Calc, Impress and Draw.)

UNO services are interfaces containing static methods only. The following UNO services
(see Figure 4.2) are provided by the extension:

• Connection: implementation for XConnection.

• SharepointDocument: factory for XSharepointDocument.

• theAuthenticationManager: singleton for XAuthenticationManager.

• theSharepointDocumentManager: singleton for XSharepointDocumentManager.

• SharepointFilePicker: implementation for XSharepointFilePicker.

• SharepointVersions: implementation for XSharepointVersions.

4.1.3 User interface

The user interface lives in the hu.ulx.lpsp.comp package. The classes of the user interface are
organized into 4 Java packages:

• hu.ulx.lpsp.comp.model: a model for the folder and document structure, used by the file
pickers (open and save as dialog windows).

• hu.ulx.lpsp.comp.ui: contains the dialog classes.

• hu.ulx.lpsp.comp.util: miscellaneous utility classes for UNO and localization.

• hu.ulx.lpsp.comp: classes implementing the rest of UNO services: authentication man-
ager, document manager, document, connection, etc.

The user interface dialogs are located in the Document repository menu item, which is
registered by the Addons.xcu configuration file, a standard configuration file of LibreOffice
extensions.

37

Menu items

The following menu items (see Figure 4.2) are designed:

• Connection: force connecting to another document management server, even if the user
is already connected.

• Open: downloads an existing document from the server.

• Close: discards the local copy of a downloaded document.

• Save: save the document model and upload the saved local copy to the server.

• Save as: upload the local document to the server using a new name.

• Versions: management of document versions.

The menu items call BASIC macros, which invoke UNO services. Those services are finally
implemented in the Java user interface.

Macros

The macros are split into two packages: the ones directly called by the menu items, and the
other utility macros.

The menu items call the following macros (see Figure 4.2) in the LPSP.menu package:

• openFile: shows the File Open dialog.

• openVersion: shows the dialog listing versions of the document.

• saveFile: saves the document via the document manager.

• saveAsFile: shows the Save As dialog.

• closeFile: closes the current document via the document manager, the already registered
close listener will handle the cleanup of the local document copy.

The following ones are the utility macros (LPSP.utils package):

• getCurrentSharepointDocument: gets the document model of the current LibreOffice
component (Writer document, Calc spreadsheet, etc.) from the document manager.

• getCurrentConnection: gets the current connection from the authentication manager.

• getConnection: shows the Connection dialog.

38

• getDocumentManager: returns the document manager singleton.

• getAuthenticationManager: returns the document manager singleton.

The BASIC macros invoke the following UNO services:

• Connection: calls theAuthenticationManager::execute().

• Open: calls SharepointFilePicker::execute() with IsOpen = true.

• Close: calls theSharepointDocumentManager::getSharepointDocument(),
then the close method on the returned result.

• Save: calls theSharepointDocumentManager::getSharepointDocument(),
then the save method on the returned result.

• Save as: calls SharepointFilePicker::execute() with IsOpen = false.

• Versions: calls SharepointVersions::execute()

Java implementation

At this point, we know the user interface entry points in our Java implementation. As men-
tioned above, Java bytecode for the UNO services is automatically generated (by javamaker).
The next task is to let the stub know where is its implementation. This is handled by the Reg-

istrationHandler class. The list of implementation classes implementing a UNO service is in
the RegistrationHandler.classes file. Each implementation class specifies what service it imple-
ments, then the registration handler collects this information and sends it to UNO, when asked.
Finally, the RegistrationClassName: header in the META-INF/MANIFEST.MF file of the Jar
package defines the registration handler class name.

As a result, the following entry points are designed in the Java implementation (see Fig-
ure 4.2):

• Connection: AuthenticationManagerImpl.execute()

• Open: SharepointFilePickerImpl.execute()

• Close: SharepointDocumentManagerImpl.getSharepointDocument(),
then SharepointDocumentImpl.close()

• Save: SharepointDocumentManagerImpl.getSharepointDocument(),
then SharepointDocumentImpl.save()

• Save as: SharepointFilePickerImpl.execute()

39

• Versions: SharepointVersionsImpl.execute()

These classes contain all the business logic and they call the SharePoint library for commu-
nication. The dialog windows are separated from UNO interfaces, they are always implemented
in separate classes. Given that there are common tasks for all of our user interface dialogs, there
is a common ancestor for all of them, called AbstractDialog.

Dialog classes

The following dialog classes (see Figure 4.2) are included in the ui package:

• Connection: ConnectionDialog (connect dialog),
ConfigServerDialog (server list),
ServerDialog (settings for an individual target)

• Open, save as: FilePickerDialog

• Close: None.

• Save: CommentVersionDialog

• Versions: VersionsDialog

For a UML class diagram showing these classes, see Figure 4.3.

4.2 Workflows

4.2.1 The workflow library

Similar to the document management support part, the Java implementation of workflow sup-
port is split into two parts as well: a generic jBPM client library and the workflow user interface.
The jBPM client is designed under the hu.ulx.lpsp.workflow namespace, the second is under the
hu.ulx.lpsp.comp one.

40

<< Abstract Class >>

AbstractDialog

<< Class >>

ConnectionDialog

<< Class >>

ConfigServerDialog

<< Class >>

ServerDialog

<< Class >>

VersionsDialog

<< Class >>

FilePickerDialog

<< Class >>

CommentVersionDialog

0..1

0..1

0..1

0..*

Figure 4.3. Classes of the user interface

41

hu.ulx.lpsp.comp

hu.ulx.lpsp.comp.utils

hu.ulx.lpsp.workflow

hu.ulx.lpsp.comp.model

hu.ulx.lpsp.sharepoint

hu.ulx.lpsp.comp.ui

Figure 4.4. Packages of the workflow-enabled SharePoint extension

Figure 4.4 shows the updated UML package diagram of our solution. The recently intro-
duced hu.ulx.lpsp.workflow package can be divided into three parts:

• controller classes

• entity classes

• parser classes

Controller classes

Given that jBPM provides a REST API to control the workflow engine, the client library can be
quite simple. Its business logic is implemented in a single class, called WFHandler. It should
provide the following features:

• authentication handling

• wrappers for the REST method calls used

• mapping between JSON data and entity classes

• parsing task data from HTML forms

Note that jBPM itself is stateless, but the client library mimics a stateful connection to avoid
asking for connection parameters before all operations.

42

Parser classes

Whenever a REST method call returns from jBPM, the result can one of the following formats:

• HTML, when getting a task form

• XML, when asked for process instance data

• JSON, in any other case

There are multiple problems with arbitrary HTML in our case:

• jBPM expects an embedded HTML engine in the client, which does not exist in our
SWING-based Java user interface

• once the form is submitted, the server would instruct the user to close the window, which
would be inconsistent with our “the window is closed when no more input should be
provided” approach

• in our case the form should be extended to ask for document-management details as well

When using HTML, there are several ways to express business decisions. Some example:

• using separate buttons for each decision

• using the HTML <select> tag to list choices

• using radio buttons

• some AJAX method

It is obviously impossible to support all these methods, so we declared a second constraint
here: decisions should be described using submit buttons.

As a result, the FormParser class can simply parse submit tag name-value pairs from the
form to detect multiple choices, and the list of values is sent to the user interface.

Entity classes

Whenever a JSON data structure is returned by a REST method call, the client library provides
the results as an entity class. A convention we follow here is that every type has two entity
classes:

• TypeRef : a reference to the instance of the given type itself

43

• TypeRefWrapper: a class for the collection of instance references of the given type

This is handy because this way we don’t have to decide what Java interface (java.util.List

could be a candidate) can cover all the details the server provides about an instance list.
The following types are handled by the client:

• Process: is a process definition

• ProcessInstance: is a process instance

• NodeInstance: is a node instance

• Task: a task instance

The type names are in sync with the REST API, which is more helpful than simply trying
to be consistent with ourselves – and store the result of a task query in a task instance type.

4.2.2 jBPM and the BPM console server

The only functionality we need that is not provided by the BPM console server REST API is
the audit log. The jBPM itself logs all the necessary information in its SQL backend, so we
need the following steps to export this knowledge to the REST API:

• extend the interface of the integration layer in the BPM console server

• implement the extended interface in jBPM

• extend the REST API to use the extended interface

Given that jBPM and the BPM console are separate project, first we need an implementation
in jBPM, then the new methods can be added to the integration layer interface in the BPM
console.

Extending jBPM

We need three new features – the ability to get information about:

• historic process instances

• node instances of a process instance

• task instances of a process instance

In case of historic process instances, the following steps are needed:

44

• a new getHistoricProcessInstances method is introduced in the ProcessManagement in-
terface implementation, calling

• a new getInactiveProcessInstanceLogsByProcessId method, to be introduced in the Com-

mandDelegate class of the integration implementation package, calling

• a new findInactiveProcessInstances method, to be introduced in the ProcessInstanceDb-

Log class in the audit package of jBPM

This last method uses Hibernate to get the necessary information from the SQL database.
The naming of the new methods is chosen to be consistent with the existing API.

Once the process instances are accessible, we need node instances. The following new
methods are introduced to achieve this:

• a new getNodeInstances method in the ProcessManagement interface implementation,
calling

• a new getNodeInstanceLogsByProcessInstanceId method, to be introduced in the Com-

mandDelegate class

Modification of the ProcessInstanceDbLog class is not necessary, support for querying node
instances is already implemented there. However, the ProcessManagement interface imple-
mentation should turn the Java object to a JSON serialization, which is handled by a new
nodeInstance() method in the Transform class of the integration implementation package.

Finally, getting information about task instances of a process instance is a bit more complex.
The following changes are introduced:

• A new getProcessInstanceTasks method in the TaskManagement interface implementa-
tion. This will instantiate a new BlockingGetTasksResponseHandler class, implementing
a new GetTasksResponseHandler interface. Then it will call:

• A new getTasksByProcessInstanceId method in the TaskClient class. This will use two
new constants (one is QueryTasksByProcessInstanceId, the other is QueryTasksByPro-

cessInstanceIdResponse), provided by the CommandName class. This new method will
call:

• the TaskServerHandler class, which should be extended to handle the QueryTasksByPro-

cessInstanceId token, which will call:

• A new getTasksByProcessInstanceId method in the TaskServiceSession class. This will
invoke a new stored procedure, named TasksByProcessInstanceId. Finally it will call:

45

ProcessManagement Transform

CommandDelegate

TaskManagement BlockingGetTasksResponseHandler

TaskClient CommandName

TaskServiceHandler

TaskServiceSession

TaskClientHandler

ProcessInstanceDbLog

Figure 4.5. Audit log provider classes of jBPM. Blue classes are modified, the green class is a
new one.

46

• the TaskClientHandler class, handling the QueryTasksByProcessInstanceIdResponse to-
ken, calling back the original BlockingGetTasksResponseHandler implementation.

The interaction between these classes can be seen on Figure 4.5.

Extending the BPM console server

Once the implementation of the integration layer in jBPM is in place, we can export these
features in the REST API, using the following paths:

• process/definition/history/{id}/instances: process instances

• process/history/{processInstanceId}/nodes: node instances

• tasks/history/{processInstanceId}: task instances

When a query about a process instance is received, then:

• A new getCompletedInstances method in the ProcessMgmtFacade class is invoked, call-
ing:

• The new getHistoricProcessInstances method in the ProcessManagement interface of the
integration layer.

Similarly, if a query about a node instance is received, then:

• A new getCompletedNodes method in the same ProcessMgmtFacade class is invoked,
calling:

• The new getNodeInstances method in the above ProcessManagement interface.

In this case serialization to JSON has to be handled by the new NodeInstanceRef and Node-

InstanceRefWrapper classes. Note that these private classes are independent of the ones having
the same name in the client library, as only the JSON output is public, allowing loose coupling.

Finally, once a query about a task is received, then:

• A new getTasksForProcessInstance method in the TaskListFacade class is invoked, call-
ing:

• The new getProcessInstanceTasks method in the TaskManagement interface of the inte-
gration layer.

47

process/definition/history/{id}/instances
process/history/{processInstanceId}/nodes
tasks/history/{processInstanceId}

4.2.3 User interface

Workflow support affects the user interface in the following areas:

• menu items

• BASIC macros

• UNO interfaces and services

• Java Implementation classes

• Dialog classes

The rest of this chapter details these modifications.

Menu items

The following new menu items are introduced for workflow integration:

• Start workflow: starts a new process instance associated with the current document.

• Workflow audit log: shows a window with information about historic process instances.

BASIC macros

These menu items call the following BASIC macros in the LPSP.menu script library:

• openWorkflow() is called when the workflow definition list is opened.

• workflowProcesses() is called when the process instance list is shown.

UNO interfaces and services

To allow the macros to invoke Java methods, first we need a UNO specification. Two new
interfaces are introduced:

• XJbpmWorkflow: invoke the Java library to start a new process instance.

• XJbpmWorkflowProcesses: invoke the Java library to show historic process instances.

Given that it’s not possible to instantiate interfaces, new services are defined to implement
these interfaces:

• JbpmWorkflow: implements XJbpmWorkflow

48

• JbpmWorkflowProcesses: implements XJbpmWorkflowProcesses

With this, the basic macros can call the following UNO services:

• Start workflow: calls JbpmWorkflow::execute().

• Workflow audit log: calls JbpmWorkflowProcesses::execute().

Java implementation classes

The UNO services invoke the following methods in the Java implementation:

• Start workflow: JbpmWorkflowImpl.execute()

• Workflow audit log: JbpmWorkflowProcessesImpl.execute()

Dialog classes

Figure 4.6 shows the new dialog classes used by the workflow UNO service implementations.
To start a new workflow, a single new dialog – StartWorkflowDialog – is planned, that will

show a list of process definitions available.
The audit log will have three new dialogs:

• WorkflowProcessesDialog is the initial window, showing the process instance list.

• WorkflowNodesDialog can show node instances of a process instance, opened from the
process instance list.

• WorkflowTasksDialog displays task instances of a process instance, similarly opened by
the process instance dialog.

Additionally here and there existing dialogs have to be extended with workflow-specific
items:

• CommentVersionDialog: When saving, new controls are needed to control decisions and
completion of workflow tasks.

• FilePickerDialog: While opening, the file picker has to be improved to allow task claim-
ing/releasing, and task listing should also be handled here.

• ConfigServerDialog: The table showing properties of different connections should show
workflow server URL.

49

<< Abstract Class >>

AbstractDialog

<< Class >>

StartWorkflowDialog

<< Class >>

WorkflowNodesDialog

<< Class >>

WorkflowProcessesDialog

<< Class >>

WorkflowTasksDialog

<< Class >>

JbpmWorkflowImpl

<< Class >>

JbpmWorkflowProcessesImpl

Figure 4.6. Classes of the workflow user interface

50

• ServerDialog: New controls are needed to be able to edit workflow URL of a server
connection.

All modifications in the existing dialog classes should tolerate the lack of a workflow server,
so document management integration can be used as a standalone feature as well.

Finally, a decision we made is we don’t support all kind of process definitions, only the
document-based ones. Our definition of being document-based is:

• the process definition has a string variable named url

• the process definition has a task form, where this URL can be specified on process start

51

Chapter 5

Implementation Details

5.1 Document management

The current section consists of three parts:

• The first one explains the prototype we wrote.

• The second one details implementation challenges when realizing the designed extension
and using external libraries.

• The third one shows changes in the extension visible from a user’s point of view, with
screenshots.

5.1.1 The prototype

As mentioned already, the SharePoint protocol has a brief reference documentation on MSDN,
but that is not enough to create an open-source implementation of the protocol. To solve that
issue, we used two virtual machines:

• One running Microsoft SharePoint 2007.

• The other running Microsoft Office 2007.

Finally, we used Wireshark [24] to monitor the network traffic between the two virtual ma-
chines to reverse engineer the details of the protocol missing from the reference documentation.

Trying to reimplement the protocol directly in the LibreOffice extension would make devel-
opment slow, partly because that would mean solving UNO interfacing issues and Java design
decisions at the same time, partly because we needed a simple script to demonstrate how the
protocol works, where Java may not be the best language to use. As a consequence, we decided

52

to write a command-line prototype in Python, a popular scripting language, and once that was
ready and worked, we ported the logic of the prototype to Java.

The prototype had commands (open, save, delete, etc.) to test each feature individually.
This covered the functionality outlined in the Background chapter, except that folder / document
listing is implicit here: the open and save-as operation invoked that, but it had no explicit
command assigned.

The prototype also had two switches to test the implementation on both SharePoint and Al-
fresco automatically. This was critical, so that when we fixed something to work with Alfresco,
we could quickly test that we did not break anything in SharePoint.

5.1.2 The SharePoint protocol

This subsection gives a brief overview of the SharePoint protocol; for the exact details, see the
source code of our solution. Note that this analysis may not be fully accurate, it is only the
understanding of the author, and was good enough to serve as a base of the implementation.

Definitions:

• workspace: a top-level directory, contains folders

• folder: a non-top-level directory, contains folders and documents

• document: several versions of the same file, identified by version numbers

• checkout, checkin, uncheckout: acquiring and releasing a lock on the document

The following workspace management operations are supported by the SharePoint library:

1. login: simply tries to access /_vti_inf.html on the server with the provided cre-
dentials

2. create workspace: SOAP request to /_vti_bin/dws.asmx in the site root

• method name: CreateDws

• parameters: title (name of the workspace)

• returns: the HTTP status code (200 means success) can be used to check if the
operation was successful

3. list workspaces: RPC request to /_vti_bin/_vti_aut/author.dll in the site
root

• method name: list documents

53

• parameters: none

• returns: HTML page, a single enumeration provides the URL of the workspaces

4. delete workspace: SOAP request to /_vti_bin/dws.asmx in the workspace root

• method name: DeleteDws

• parameters: none

• returns: the HTTP status code (200 means success) can be used to check if the
operation was successful

Folder management:

1. create folder: SOAP request to /_vti_bin/dws.asmx in the site root

• method name: CreateFolder

• parameters: url (url of the folder)

• returns: the HTTP status code (200 means success) can be used to check if the
operation was successful

2. list folders: HTTP GET to /_vti_bin/owssvr.dll in the workspace root

• parameters: location (URL of the folder), FileDialogFilterValue (filter
to apply to the result on server side, for example *.*)

• returns: HTML page, containing a table where every row is a folder or a docu-
ment and each column contains properties of the item. The property names can be
configured in runtime on the server.

3. delete folder: SOAP request to /_vti_bin/dws.asmx in the site root

• method name: DeleteDws

• parameters: url (url of the folder)

• returns: the HTTP status code (200 means success) can be used to check if the
operation was successful

Document management:

1. open: no dedicated method, HTTP GET should be used with the URL’s returned by list

folders

2. save: RPC request to /_vti_bin/_vti_aut/author.dll in the workspace root

54

• method name: put document (yes, RPC method names can contain spaces)

• parameters: service_name (name of the workspace), document (structure
containing the document name and last modification date), comment (this option
should be provided, but its value is ignored)

• payload: everything after two newline characters is considered as the document data

• returns: an RPC response packet, containing a "successfully put document" string
with a msg= or message= prefix

3. remove documents: RPC request to /_vti_bin/_vti_aut/author.dll in the
workspace root

• method name: remove documents

• parameters: url_list (list of URL’s to remove)

• returns: an RPC response packet, containing a "successfully put document" string
with a msg= or message= prefix

4. get document metadata: RPC request to /_vti_bin/_vti_aut/author.dll in
the workspace root

• method name: getDocsMetaInfo

• parameters: url_list (list of URL’s to query)

• returns: several HTML enumerations, one for each URL

Lock management:

1. checkout: SOAP request to /_vti_bin/lists.asmx in the workspace root

• method name: CheckOutFile

• parameters: pageUrl (URL of the document to check out), lastmodified (last
modification date of the document, in case the document is already opened but not
checked out)

• returns: CheckOutFileResult, containing a boolean value

2. checkin: SOAP request to /_vti_bin/lists.asmx in the workspace root

• method name: CheckInFile

• parameters: pageUrl (URL of the document to check in), comment (the "commit
message") and CheckinType (0 = MinorCheckIn, 1 = MajorCheckIn, and
2 = OverwriteCheckIn)

55

• returns: CheckInFileResult, containing a boolean value

3. undo checkout: SOAP request to /_vti_bin/lists.asmx in the workspace root

• method name: UndoCheckOut

• parameters: pageUrl (URL of the document to uncheckout)

• returns: UndoCheckOutResponse, containing a boolean value

Version management:

1. create version: no dedicated method, a save or checkin can create a new version

2. list versions: SOAP request to /_vti_bin/versions.asmx in the workspace root

• method name: GetVersions

• parameters: fileName (URL of the document)

• returns: a list of result elements – each contains "version", "created", "creat-
edBy", "size", "comments" and "url" fields

3. restore version: SOAP request to /_vti_bin/versions.asmx in the workspace
root

• method name: RestoreVersion

• parameters: fileName (URL of the document to restore), fileVersion (old
version number)

• returns: a list of soap:Fault elements – if it is empty, it means success

4. delete version: SOAP request to /_vti_bin/versions.asmx in the workspace root

• method name: DeleteVersion

• parameters: fileName (URL of the document), fileVersion (version num-
ber)

• returns: a list of soap:Fault elements – if it is empty, it means success

In all SOAP requests an additional X-Office-Version header is necessary, the value
of this header is 12.0.6514 for Office 2007.

In RPC requests, the two following headers are necessary:
Content-Type: application/x-vermeer-urlencoded

X-Vermeer-Content-Type: application/x-vermeer-urlencoded

Once the details of the protocol – at least the parts required for our use-cases – were clear,
we could begin writing the LibreOffice extension.

56

5.1.3 External libraries

It was obvious that doing HTTP communication with NTLM authentication is an already solved
problem, but we needed to decide which library to use. Given that OPAL already used Apache
commons-httpclient [25] 3.x for HTTP communication, that was an option. Unfortunately that
version does not support NTLM, so we used Apache httpcomponents [26], which is the suc-
cessor of the previous library (starting with version 4.x). The two version series have different
APIs, so it was possible to temporarily use both in parallel, and migrating code incrementally.

Once we had httpcomponents, we still needed to write detection code that decided what to
request from httpcomponents: Basic or NTLM authentication.

An other interesting issue was to parse the response received after sending Vermeer RPC
requests to the server. The result is valid HTML, but not XHTML. For example, part of the
response is:
<html><head><title>vermeer RPC packet</title></head>

<body>

...

vti_timecreated

TR|27 Feb 2011 19:07:25 +0000

vti_timelastmodified

TR|11 Mar 2011 16:39:35 +0000

vti_timelastwritten

TR|11 Mar 2011 16:39:35 +0000

...

</body>

</html>

That means a simple XML parser was not enough to extract the needed values from this
response. To solve this issue, we used TagSoup [27], which is a SAX parser, accepting plain
old HTML input.

5.1.4 User interface

Once the Sharpeoint Library was ready, we updated the user interface to use the SharePoint
library for communication. We also had to extend the dialogs to allow a few more features.
Namely:

• Create and delete document workspaces.

• Delete documents.

• Delete and restore versions.

• When saving a document, allow: minor change with a comment and overwrite of a pre-
vious version.

57

For example, creating a new document workspace is implemented as can be seen on Fig-
ure 5.1.

Figure 5.1. Implementation of creating a document workspace

Earlier only viewing older versions was possible; the new Versions dialog now allows a
user to delete and restore versions as well (as detailed above in Table 2.1, deleting versions
does not work with Alfresco, due to the shortcomings of their SharePoint implementation), see
Figure 5.2.

Figure 5.2. Implementation of version restore and delete

5.1.5 Exception handling

The last challenge was the localization of error messages in BASIC. The language does not
support any kind of localization. What it supports is the following technique (control flow
shown on Figure 5.3):
Sub openVersion

...

On Error GoTo errSpDoc

58

oVersion.execute()

Exit Sub

errSpDoc:

MsgBox(oVersion.ErrorReason)

Exit Sub

End Sub

BASIC

Java

In
v
o
k
e
 m

e
th

o
d Exception with

localized error

messageNo error

Figure 5.3. Control flow of localized error messages in BASIC, thrown by Java.

The On Error part can hide any kind of exception thrown by Java, and as long as the Java
side calls setErrorReason() on the SharepointVersionsImpl object before throwing an exception,
the user gets a friendly error message, which is even localized.

5.2 Workflows

The implementation of workflow integration had multiple interesting challenges:

• adding support for the authentication method jBPM uses

• handling data received in responses from jBPM

• error handling in multiple levels

5.2.1 Authentication

The jBPM uses form-based authentication. That means that in case the user is not yet logged
in, he/she is redirected to a login form, where the user name and password should be submit-
ted. The httpcomponents package provides a dedicated UrlEncodedFormEntity class for this
purpose:

• Fields in the form should be collected in a NameValuePair list;

59

• Once the list is ready, the entity generator class can produce the necessary payload for the
HTTP request, using the application/x-www-form-urlencoded MIME type
[28].

There are two problems here:

• The user interface expects a stateful connection here, while HTTP is stateless.

• The password is sent without encryption.

The first problem can be solved multiple ways. First, the workflow handler can remember
the credentials passed from the user interface, hiding the repeated login procedure from the
user. Alternatively, in this case jBPM handles sessions, so receiving and sending back cookies
avoids multiple logins as well.

The problem of clear-text passwords sent over the network can be solved at an application
server level, in case HTTPS is used.

From a user experience point of view an additional problem is the confusing connection
dialog that asks for multiple user names and passwords. Given that we are integrating the
document management and the workflow system, we can expect that the same credentials are
used by the same users to access these servers. As a result, the user interface asks for a single
login and password, the Java implementation does two logins in practice, though. The user
interface signals an error in case any of these logins failed.

5.2.2 JSON handling

Most responses received from the jBPM server are JavaScript Object Notation (JSON) strings.
The interested reader can look into the specification [29], all we need to know about it here is
that it can represent a set of Java objects, allowing references between them.

Once entity classes are available (as described in the Design chapter), the Gson library [30]
can be used to parse those strings to entity class instances.

The benefits of using Gson over other implementations (like org.json [31]):

• it requires no pollution of the entity classes regarding JSON (i.e. no toJson() methods
are necessary)

• when a default constructor is not available for an entity class, it supports the registration
of instance creators for such types

It uses reflection to access fields, so the general object-oriented methodology where the
fields themselves are private and public getter/setter methods are provided is possible to use.

60

Also, the parser is quite liberal about entity classes, in case a field is present in the JSON string
but the associated Java class does not have such a field, it is simply ignored. That helps our
extension to be compatible with future jBPM server versions.

A pitfall during the implementation was that the usage of generic types is mandatory when
using references between the classes:

• In case a generalized collection is used as a field type, Gson can extract the type infor-
mation of the referenced objects from the field type, and instantiate the correct class.

• Otherwise, there is no way to guess the type of the referenced instance, so a parse excep-
tion is thrown.

5.2.3 User interface

Private streams

The first challenge was to map the concepts of a user and the associated personal / group tasks
to the file / folder metaphor, already known by users.

In LibreOffice, access to files is usually handled by a sequence of property values (key-value
pairs), where usually the URL property is used to access the physical file. However in some
cases there is no real URL, but the contents of the object are provided as a Stream property. An
example is the framework module [32], where even a define (with a value of private:stream) is
provided to be used as a fake URL for such streams. A similar constant is available to access
factories with a private:factory URL. Using that URL e.g. in Writer, a new empty document is
opened.

Extending this technique, the extension introduces the following identifiers in the private:

namespace:

• private:personaltasks is used to access personal tasks

• private:grouptasks is used to access group tasks

The WFHandler.urlopen() method, which was originally designed to open regular URL’s,
can handle these special ones. During the opening operation it performs the following steps:

• It queries task instances of the given task type from the workflow server.

• Once a task instance is selected, it extracts the associated document URL from the asso-
ciated process instance variables.

• Finally, the extension already knows how to open a document server URL.

61

Figure 5.4. Implementation of making a business decision when completing a human task

During save, the CommentVersionDialog class invokes WFHandler to check if the docu-
ment has a task associated. If so, the two controls at the bottom of the dialog are enabled to
control the interaction with the workflow server during save (see Figure 5.4):

• if the workflow should be stepped

• the answer to the business decision, if available

Audit log

The second new menu item introduced by the workflow integration is the audit log. First a
dialog asks the process type to audit (similar to the process definition selector when starting a
new process instance), then the list of historic process instances appear.

62

Figure 5.5. Implementation of the audit log: process instances, node instances and users per-
forming human tasks

Buttons next to this table are available to inspect node and task instances associated to the
process. With this, we can answer all of our original questions:

• When did an action happen? Date columns of the process and node dialogs.

• Who performed the action? Assignee column of the task dialog.

• Where did it happen? Name column of the process and task dialogs.

• What was the outcome of the action? Name column of the node dialog.

63

5.2.4 Error handling

Server

Document

management

server
Workflow engine

Office client

Services

Network connection

C
o
n
n
e
c
ti
o
n
 e

rr
o
r

S
e
rv

e
r

c
o
n
fi
g
u
ra

ti
o
n
 e

rr
o
r

S
e
rv

ic
e
 c

o
n
fi
g
u
ra

ti
o
n
 e

rr
o
r

S
e
rv

ic
e
 r

u
n
ti
m

e
 e

rr
o
r

Figure 5.6. Different levels of error handling in the extension

There are multiple levels where error handling should be implemented (Figure 5.6):

• Accessing jBPM without a connection.

• Accessing jBPM with a connection not configured for workflows.

• Accessing a jBPM service which is not implemented by the server instance in question.

• Handling errors from existing services.

Accessing without a connection

Detecting this status is implemented in the BASIC macros:

• Macros call the getCurrentConnection() function get the connection reference.

• getCurrentConnection() gets the current connection from the authentication manager
(which is always available, since it is a singleton).

• In case there is already a connection, it returns the reference. If there is no connection, it
calls the getConnection() function, that shows the connection dialog.

In case the user cancels the connection dialog, the action is cancelled, this way the Java
implementation can assume there is always a connection available.

64

Accessing without workflow support

The user always has the possibility to leave the workflow URL of a server configuration empty.
In this case the extension does not try to connect, either.

Later during workflow-related operations the control flow always starts with the following
steps:

• get a reference to the current connection

• call the getWFHandler() method of the connection, to check if workflow support is avail-
able

In case the second step fails, the user gets an error message explaining the issue.

Checking workflow services

The jBPM support listing available services, however that is more about serving as a user guide
to show what can be done, rather than a page to be machine-parsed. The already mentioned
TagSoup parser could be used to extract the necessary information, but the page is not part of
any stable API, so that approach could easily break with the next jBPM version.

A better method is to properly handle all JSON parsing exceptions. This is possible because
in case a service is not supported, a HTML error is returned by the server, which – of course –
cannot be handled by the JSON parser.

Using this technique we can inform the user about exactly what required service is missing
on the server.

Errors in existing services

A rather generic approach would be to check the HTTP code to detect errors, but it has two
problems:

• The server returns HTTP 200 (OK) even in case the HTML title of the page is HTTP 401.

• Even if the code would not be 200, we can’t distinguish between service errors and non-
existing services, unless different error codes are used (e.g. 500 for service errors, 503
for unavailable services).

• One can also argue that HTTP error codes are to be used by the application server itself,
not by servlets running on the server.

65

A better method is to check the content-type, and – in case it is HTML – the title of the
page. If the content-type is unexpected, that will mean the service is not available, as described
above. Otherwise, the title of the returned HTML page correctly contains the error code.

An example is when a login fails, in that case the HTTP 401 error code is properly returned
in the rendered HTML error page.

66

Chapter 6

Evaluation

6.1 Document management

In this section, we take Table 2.1 as a starting point and check what features are implemented
and what are not.

The testing environment was built from a client machine, a SharePoint server and an Al-
fresco server, as can be seen on Figure 6.1.

Sharepoint Alfresco

LibreOffice

Figure 6.1. Architecture of the test system

The client machine had the following details:

• Frugalware Linux 1.5 (English and Hungarian locale)

• LibreOffice 3.4, LibreOffice 3.3, OpenOffice.org 3.3 and OpenOffice.org 3.2.1

Properties of the SharePoint machine:

• Microsoft Windows Windows Server 2003 R2 Enterprise (English)

• Microsoft SharePoint 2007 Enterprise

67

Finally the Alfresco machine:

• Fedora Linux 16

• Alfresco 3.4.d Community Edition

Regarding functionality, all items from the feature table are implemented in the extension.
The following areas are missing from the table, and not supported at the moment:

• User management, including roles and permissions inside workspaces.

• Task management in workspaces.

• Link management in workspaces.

The following items are not in the feature table, but are available:

• Creating and deleting workspaces is supported by Microsoft Office, but nested folder
structures can only be read. It turned out that the protocol allows creation, so the exten-
sion supports this.

• Namespaces of settings and classes are renamed, so parallel installation of our extension
and OPAL is possible.

The extension is written in Java and BASIC, so it is meant to be portable. LibreOffice is
available on Windows and OSX as well – so the extension should work there, but we only had
time to test it on Windows.

Regarding localization, all user-visible strings are externalized to Java property files. Dur-
ing development we paid attention to English strings, then at the end as a demonstration we
created the Hungarian translation as well. Adding new translations is easy.

Finally, the extension inherited some of the limitations of the original OPAL codebase:

• The GUI is not started in a separate thread in all cases, so in many cases the user interface
is not updated in the background.

• Classes we did not touch still have French comments inside.

68

6.2 Workflows

Test architecture

The evaluation of workflow support is based on the use-cases of the workflow part of the
Overview of the Approach chapter.

jBPM

LibreOffice

Document

Server

Workflow

Server

Human Task

Server

Figure 6.2. Architecture of the workflow-enabled test system

We designed a test architecture to evaluate these features, and Figure 6.2 shows the structure
of this test environment. The test system has the following dependencies:

• The connection should be initiated from our LibreOffice extension when both the docu-
ment server and the workflow engine is ready.

• The workflow server can be started before the Human Task server, but user connections
can only be served when both are ready.

• Additionally, in case a custom storage backend is used for jBPM (for example MySQL
instead of the default H2 backend), then that should be ready before any component of
jBPM is started.

During our tests we used the same document servers and office suites than for the document-
server-only tests. The jBPM instance was set up on the same physical machine where the office
suite ran.

The workflow-specific tests were executed using the following component versions:

• jBPM (jbpm-bpmn2 and jbpm-human-task) 5.1.x: latest version at the time of writing
(November 2011) with additional patches detailed earlier.

• BPM Console 2.1 with the patches.

• MySQL 5.5.14 without additional modifications.

The jBPM developers are looking forward to the modifications and are planning to review
them once the thesis is ready.

69

Used test methods

Three different test methods were used:

• The existing document management unit tests were used to ensure that we do not break
the document-management-only use cases (see Table 2.1).

• Separate command-line applications were used to test features of the workflow library.
These are to be turned into unit tests.

• Due to the complex architecture, integration tests were performed manually.

The last method does not only mean it was continuously tested by the author: a closed set
of users also tested it once the document management part was ready. They were already used
to using a document server and office suite separately, and they all had the possibility not to use
the extension if they thought it complicated their daily work. The general feedback was:

• The extension made their work easier: in most cases they did use the extension once it
was installed.

• Even if they had to report bugs here and there, the extension never damaged data on the
servers (e.g. by accidentally deleting a version of a document).

Limitations

The workflow support part has the following known limitations:

• Process definitions without a start form – where the associated document URL can be
specified – are not supported.

• Free-form HTML is not allowed in task forms when making a business decision.

• The audit log features are not available with an official jBPM version.

The first two are design decisions, the last one will be resolved in the near future, as men-
tioned earlier.

However the document management integration also causes two limitations, which affects
workflows as well:

• The SharePoint protocol does not allow listing files without an extension. This means
when using the extension to start a workflow, such files can’t be associated to the process
instance.

70

• By choosing a decoupled approach, we also require an external method to be used for
keeping user accounts on the document management and workflow servers in sync.

Here the first item is a known limitation, the second one is a design decision (see Chapter 4).

71

Chapter 7

Related Work

7.1 Document management

We already saw that there is no solution today that is open-source, requires no additional server-
side installation and communicates with a Microsoft SharePoint server (see Table 7.1).

However, there are similar projects, which – even if they solve a sightly different problem
– may provide excellent ideas to borrow.

OPAL

We already introduced OPAL, which is open-source, but:

• Requires server-side modifications.

• Works with an Alfresco server.

• Not really maintained (does not work with latest stable OpenOffice.org).

However, its user interface and concepts are quite similar to our solution.

LibreOffice CMIS

LibreOffice CMIS [33] is a LibreOffice extension: a Java based implementation of a Universal
Content Provider for making any content in a CMIS repository usable from LibreOffice. The
main problem with it is that SharePoint 2007 does not implement CMIS, so this does not solve
our problem at the moment.

72

SharePoint Connector

The Oracle Connector for SharePoint Server [34] is a commercial OpenOffice.org extension,
providing SharePoint support in OpenOffice.org. It has multiple problems:

• It is not free. Sadly it is part of Oracle Open Office Enterprise Edition, which is no longer
available from the Oracle Store at the time of writing (November 2011).

• When we checked it earlier, it was only available on Windows 32-bit and it required a
server-side component as well.

libcmis

The libcmis [35] library is a general purpose CMIS library, written in C++. LibreOffice has a
Universal Content Provider built into its core, internally using libcmis.

It has two issues at the moment:

• its CMIS support is incomplete

• like LibreOffice CMIS, it does not support SharePoint 2007

The first problem is expected to be resolved in the long term, the second is not a priority for
this project.

Drupal SharePoint module

An additional SharePoint module [36] for the Drupal content management system is also avail-
able. It solves a different problem, though:

• It can only read from a SharePoint server.

• It is written for a CMS, not an office suite.

• To achieve its goals, it was enough to use the SOAP interface of the SharePoint server,
which is not enough for our purposes.

Feature OPAL LibO CMIS libcmis SP Conn. Drupal
License open-source open-source open-source proprietary open-source

Server component yes no no yes no

SharePoint 2007
support

no no no yes partial

Table 7.1. Comparison of related document management systems

73

7.2 Workflows

Table 7.2 shows that there is no ready approach today for document-based workflow manage-
ment, that

• supports arbitrary process definitions

• decouples document and workflow management

• is available under an open-source license

On the other hand, these are partly detailed in papers and implemented in some other
projects, which we present here.

Related papers

Document-based workflows1 is an active research topic today. Multiple interesting ideas are
raised in recent papers.

A framework for document-driven workflow systems [37]:

• details why information and resource based workflows are also important, not just control
based ones

• use case: user changes the document, change listeners intercepts changes, check con-
straints, then accept or reject them

• various complex features planned: split/merge of documents, different locking types

• proposed implementation using SQL triggers

• detailed comparison of control flow based versus document based approach

The proposed implementation is heavily storage-dependent, while our decision is to inter-
operate with existing storage solutions.

Mobility in the virtual office: a document-centric workflow approach [38]:

• introduces decentralized document-driven workflows

• changes to workflows travel with the documents

• decentralization is handled with a peer-to-peer architecture

1Also known as document-centric or document-driven workflows.

74

This paper proposes a decentralized architecture, our method is simpler, having a central-
ized design.

XDoC-WFMS – A Framework for Document Centric Workflow Management System [39]

• presents use cases of intiutive workflow and document management integration: news-
paper editing, processing job applications

• proposed solution: documents have an embedded micro-agent, so the document itself
will know where to go after a task is completed

The suggestion is to integrate executable code with documents, while our approach is to
decouple the workflow engine and the document servers.

Access control in document-centric workflow systems – an agent-based approach [40]

• this approach is without decoupling as well

• the workflow object is proposed to communicate with the document object

This approach highlights the importance of access control, our extension simply threats it
as an existing building block.

SharePoint Designer

The SharePoint Designer 2007 tool [41] supports designing process definitions, to be executed
within the SharePoint document management server itself. It focuses on two features:

• triggers, executing an action when a document-related event occurs

• a few builtin process definitions (review, approval, collecting signatures)

Its problems for our purposes:

• decoupling of the document and workflow server

• document masking

• standard workflow format (such as BPMN)

75

Liferay

Liferay2 [42] is an open-source content management system, focusing on the needs of enter-
prises. Regarding document management, it comes with a Document Library feature, which is
similar to the one Sharepoint and Alfresco provides.

The Document Library publishes the contents via WebDAV, so basic file operations (open,
save) are simple from an external application as well. It also supports versioning, document
metadata. Advanced Sharepoint-like actions like commit message during checkin is not yet
supported.

It has pluggable workflow integration, the following engines are supported out of the box:

• jBPM3

• Kaleo

The latter one is configured by default, and it even has a few sample definitions after instal-
lation. Unfortunately, it seems Liferay invented its own schema for process definitions when
using Kaleo [43], and thus does not provide any support for the standard BPMN format.

Its office integration is solely due to the WebDAV interface, with its known limitations for
our purpose.

Feature Sharepoint Workflow Liferay jBPM
License proprietary open-source open-source

Decoupling no no yes

Office integration yes no no

Standard process
definition format

no no yes

Table 7.2. Comparison of related workflow solutions

2The exact version I evaluated: liferay-portal-tomcat-6.0.6-20110225.

76

Chapter 8

Conclusion and Future Work

The solution designed shows a way to integrate open-source office productivity software in an
enterprise environment. We described how today’s document management servers and work-
flow management systems work, designed and developed office integration to document man-
agement systems, developed office integration of workflow support, finally we evaluated the
solution on multiple platforms.

8.1 Document management

We finished the design of the solution, and it was clear that creating a LibreOffice extension
that provides the necessary features is certainly possible. We also implemented support for the
most important use-cases:

• workspace, folder and document management based on the folder/file metaphor

• version control support for documents: creating, updating, listing and deleting versions

• collaboration during document editing: lock management

As already discussed above, the most important weakness of the solution is that it focuses
only on the core functionality:

• As part of error handling, it presents permission errors to the user, but changing permis-
sions is not possible from the extension.

• Managing users, tasks and links is yet to be designed and implemented.

Not ignoring the shortcomings, we can still conclude that the created solution makes mi-
grating office productivity suites to open-source alternatives easier, which was our initial goal.

There are some implementation and design issues that need to be addressed, however, in
the future:

77

• An implementation improvement would be to review the inherited codebase and make
sure that the user interface runs in a separate thread in all cases. Currently, there are cases
when the user interface is not repainted due to waiting for an input from the user.

• Using LibreOffice’s filepickers instead of reinventing our own would result in a more
consistent user experience.

• Once CMIS will be widely implemented by proprietary document management servers,
use the CMIS protocol instead of the native SharePoint for client-server communication.

8.2 Workflows

Once the design of the document management part was ready, we continued planning the work-
flow integration part. Our approach shows, how a workflow engine and an existing document-
management server can be successfully integrated into open-source office suites, addressing
several use-cases originating from an enterprise environment:

• Management of personal and group-assigned human tasks.

• Decoupled access of the document server and the workflow engine.

• Masked document access, based on task information.

• Support of business decisions, affecting the associated process instance.

• Audit log integration.

The following features are not designed in the current thesis, but they could be done in the
future:

• The gwt-console-server already provides a REST API to access the audit log, the gwt-
console native UI could be improved to take advantage of that.

• The current extension can communicate with jBPM only, it could be extended to support
various other pluggable workflow engines.

The following features are partly provided by our extension, but could be improved further:

• Extending business decision support, adding integration for other kinds of decisions (see
Figure 3.6 and Figure 2.10) would be helpful.

78

• A document can be attached to a single process instance only, this could be extended to
allow multiple process instances accessing the same document in parallel – but in that
case proper locking should be designed first.

To summarize our results:

• We designed client-side document management integration.

• We added support for workflow integration.

• We kept the created solution portable across different platforms.

We hope that the release of our LibreOffice extension as an open-source component con-
tributes in general to the acceptance of open-source software in enterprise environments.

79

Bibliography

[1] Subversion: Official website. http://subversion.apache.org/.

[2] Git: Fast Version Control System. http://git-scm.com/.

[3] Microsoft Office. http://office.microsoft.com/en-us/.

[4] The Document Foundation: LibreOffice. http://www.libreoffice.org/.

[5] OpenOffice.org - The Free and Open Productivity Suite. http://www.openoffice.
org/.

[6] Microsoft: SharePoint Official Site. http://sharepoint.microsoft.com/

en-us/Pages/default.aspx.

[7] Alfresco: Open Source Enterprise Content Management System. http://www.

alfresco.com/.

[8] Google Docs. http://docs.google.com/.

[9] The CMIS v1.0 OASIS Standard Specification. http://docs.oasis-open.org/
cmis/CMIS/v1.0/os/cmis-spec-v1.0.pdf.

[10] CMSWire: IBM’s Social Strategy Includes Support for CMIS. http://tinyurl.

com/ibm-cmis.

[11] Alfresco Wiki: Main Page. http://wiki.alfresco.com/wiki/Main_Page.

[12] Microsoft Sharepoint: put document Method, document Parameter. http://msdn.

microsoft.com/en-us/library/ms416274.aspx.

[13] Joining Dots: Blog: SharePoint History. http://www.joiningdots.net/blog/
2006/08/sharepoint-history.html.

[14] OpenOffice.org Wiki: Uno. http://tinyurl.com/wiki-uno.

[15] Apache: The HTTP Server Project. http://httpd.apache.org/.

80

http://subversion.apache.org/
http://git-scm.com/
http://office.microsoft.com/en-us/
http://www.libreoffice.org/
http://www.openoffice.org/
http://www.openoffice.org/
http://sharepoint.microsoft.com/en-us/Pages/default.aspx
http://sharepoint.microsoft.com/en-us/Pages/default.aspx
http://www.alfresco.com/
http://www.alfresco.com/
http://docs.google.com/
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.pdf
http://tinyurl.com/ibm-cmis
http://tinyurl.com/ibm-cmis
http://wiki.alfresco.com/wiki/Main_Page
http://msdn.microsoft.com/en-us/library/ms416274.aspx
http://msdn.microsoft.com/en-us/library/ms416274.aspx
http://www.joiningdots.net/blog/2006/08/sharepoint-history.html
http://www.joiningdots.net/blog/2006/08/sharepoint-history.html
http://tinyurl.com/wiki-uno
http://httpd.apache.org/

[16] Oracle: javax.servlet Package (Java EE 6. http://download.oracle.com/

javaee/6/api/javax/servlet/package-summary.html.

[17] Jason Greene: Why is JBoss AS 7 so fast? http://planet.jboss.org/post/

why_is_jboss_as_7_so_fast.

[18] Object Management Group: Business Process Management Initiative. http://www.

bpmn.org/.

[19] JBoss Community: jBPM. http://www.jboss.org/jbpm.

[20] Eclipsepedia: What databases are supported by JPA. http://wiki.eclipse.org/
EclipseLink/FAQ/JPA.

[21] John O’Conner: Creating Extensible Applications With the Java Platform (Sun Devel-
oper Network). http://java.sun.com/developer/technicalArticles/

javase/extensible/.

[22] AlfrescoForge: OpenOffice.org Plugin for Alfresco. http://forge.alfresco.

com/projects/opal/.

[23] Microsoft Sharepoint: Method Syntax. http://msdn.microsoft.com/en-us/

library/ms463030.aspx.

[24] Wireshark: Go deep. http://www.wireshark.org/.

[25] Apache HttpClient Home. http://hc.apache.org/httpclient-legacy/.

[26] Apache HttpComponents. http://hc.apache.org/.

[27] TagSoup. http://home.ccil.org/~cowan/XML/tagsoup/.

[28] XForms 1.1: Serialization as application/x-www-form-urlencoded. http://www.w3.
org/TR/xforms/#serialize-urlencode.

[29] Douglas Crockford: The application/json Media Type for JavaScript Object Notation
(JSON). http://tools.ietf.org/html/rfc4627.

[30] Google Project Hosting: A Java library to convert JSON to Java objects and vice-versa.
http://code.google.com/p/google-gson/.

[31] JSON Format Home Page: Java. http://json.org/java/.

[32] LibreOffice Reference: Framework Module. http://opengrok.libreoffice.

org/xref/core/framework/inc/protocols.h#50.

81

http://download.oracle.com/javaee/6/api/javax/servlet/package-summary.html
http://download.oracle.com/javaee/6/api/javax/servlet/package-summary.html
http://planet.jboss.org/post/why_is_jboss_as_7_so_fast
http://planet.jboss.org/post/why_is_jboss_as_7_so_fast
http://www.bpmn.org/
http://www.bpmn.org/
http://www.jboss.org/jbpm
http://wiki.eclipse.org/EclipseLink/FAQ/JPA
http://wiki.eclipse.org/EclipseLink/FAQ/JPA
http://java.sun.com/developer/technicalArticles/javase/extensible/
http://java.sun.com/developer/technicalArticles/javase/extensible/
http://forge.alfresco.com/projects/opal/
http://forge.alfresco.com/projects/opal/
http://msdn.microsoft.com/en-us/library/ms463030.aspx
http://msdn.microsoft.com/en-us/library/ms463030.aspx
http://www.wireshark.org/
http://hc.apache.org/httpclient-legacy/
http://hc.apache.org/
http://home.ccil.org/~cowan/XML/tagsoup/
http://www.w3.org/TR/xforms/#serialize-urlencode
http://www.w3.org/TR/xforms/#serialize-urlencode
http://tools.ietf.org/html/rfc4627
http://code.google.com/p/google-gson/
http://json.org/java/
http://opengrok.libreoffice.org/xref/core/framework/inc/protocols.h#50
http://opengrok.libreoffice.org/xref/core/framework/inc/protocols.h#50

[33] LibreOffice CMIS. http://gitorious.org/libreoffice-cmis.

[34] Oracle: Connector for SharePoint Server. http://extensions.services.

openoffice.org/en/project/sharepoint_connector.

[35] Cédric Bosdonnat: LibCMIS. https://gitorious.org/libcmis.

[36] Drupal: SharePoint Project. http://drupal.org/project/sharepoint.

[37] J Wang: A framework for document-driven workflow systems. http://php.

scripts.psu.edu/faculty/a/x/axk41/BPM05-jerry-reprint.pdf.

[38] R Carbon, G Johann, T Keuler, D Muthig: Mobility in the virtual office: a document-
centric workflow approach. https://mailserver.di.unipi.it/ricerca/

proceedings/ICSE2008/sam/p21.pdf.

[39] R Krishnan, L Munaga: XDoC-WFMS, A Framework for Document Centric Workflow
Management System. http://www.cs.sunysb.edu/~krishnan/xdoc.htm.

[40] Access control in document-centric workflow systems – an agent-based approach. http:
//ce.sharif.edu/~yuosefsa/article/CS.pdf.

[41] Microsoft: SharePoint Designer. http://www.microsoft.com/download/en/
details.aspx?id=21581.

[42] Liferay: Enterprise open source portal and collaboration software. http://www.

liferay.com/.

[43] Liferay Portal Documentation: Workflow with Kaleo. http://www.liferay.com/
documentation/liferay-portal/6.0/administration.

82

http://gitorious.org/libreoffice-cmis
http://extensions.services.openoffice.org/en/project/sharepoint_connector
http://extensions.services.openoffice.org/en/project/sharepoint_connector
https://gitorious.org/libcmis
http://drupal.org/project/sharepoint
http://php.scripts.psu.edu/faculty/a/x/axk41/BPM05-jerry-reprint.pdf
http://php.scripts.psu.edu/faculty/a/x/axk41/BPM05-jerry-reprint.pdf
https://mailserver.di.unipi.it/ricerca/proceedings/ICSE2008/sam/p21.pdf
https://mailserver.di.unipi.it/ricerca/proceedings/ICSE2008/sam/p21.pdf
http://www.cs.sunysb.edu/~krishnan/xdoc.htm
http://ce.sharif.edu/~yuosefsa/article/CS.pdf
http://ce.sharif.edu/~yuosefsa/article/CS.pdf
http://www.microsoft.com/download/en/details.aspx?id=21581
http://www.microsoft.com/download/en/details.aspx?id=21581
http://www.liferay.com/
http://www.liferay.com/
http://www.liferay.com/documentation/liferay-portal/6.0/administration
http://www.liferay.com/documentation/liferay-portal/6.0/administration

	Introduction
	Document management
	Workflows

	Background
	Document management
	General architecture of document management systems
	Related standards
	Concrete implementations
	Differences from version control systems
	UNO compontents

	Workflows
	Application servers
	Business Process Model and Notation
	Workflow engines
	Object-Relational Mapping
	The BPM Console

	Overview of the Approach
	Document management
	Workflows

	Design
	Document management
	The SharePoint library
	The UNO interfaces
	User interface

	Workflows
	The workflow library
	jBPM and the BPM console server
	User interface

	Implementation Details
	Document management
	The prototype
	The SharePoint protocol
	External libraries
	User interface
	Exception handling

	Workflows
	Authentication
	JSON handling
	User interface
	Error handling

	Evaluation
	Document management
	Workflows

	Related Work
	Document management
	Workflows

	Conclusion and Future Work
	Document management
	Workflows

	Bibliography

